Regular approximations of spectra of singular discrete linear Hamiltonian systems with one singular endpoint
نویسندگان
چکیده
منابع مشابه
Singular constrained linear systems
In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...
متن کاملRegular approximations of singular Sturm-Liouville problems
Given any self-adjoint realization S of a singular Sturm-Liouville (S-L) problem, it is possible to construct a sequence {Sr} of regular S-L problems with the properties (i) every point of the spectrum of S is the limit of a sequence of eigenvalues from the spectrum of the individual members of {Sr} (ii) in the case when S is regular or limit-circle at each endpoint, a convergent sequence of ei...
متن کاملsingular constrained linear systems
in the linear system ax = b the points x are sometimes constrained to lie in a given subspace s of column space of a. drazin inverse for any singular or nonsingular matrix, exist and is unique. in this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of drazin inverse in solving such systems is investigated. constrained linear system arise ...
متن کاملConvergence of regular approximations to the spectra of singular fourth order Sturm-Liouville problems
We prove some new results which justify the use of interval truncation as a means of regularising a singular fourth order Sturm-Liouville problem near a singular endpoint. Of particular interest are the results in the so called lim-3 case, which has no analogue in second order singular problems.
متن کاملSingular Sturmian theory for linear Hamiltonian differential systems
We establish a Sturmian type theorem comparing the number of focal points of any conjoined basis of a nonoscillatory linear Hamiltonian differential system with the number of focal points of the principal solution. We also present various extensions of this statement.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2018
ISSN: 0024-3795
DOI: 10.1016/j.laa.2017.11.029